3.5.49 \(\int \frac {x^{5/2}}{a+b x} \, dx\)

Optimal. Leaf size=68 \[ -\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{b^{7/2}}+\frac {2 a^2 \sqrt {x}}{b^3}-\frac {2 a x^{3/2}}{3 b^2}+\frac {2 x^{5/2}}{5 b} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {50, 63, 205} \begin {gather*} \frac {2 a^2 \sqrt {x}}{b^3}-\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{b^{7/2}}-\frac {2 a x^{3/2}}{3 b^2}+\frac {2 x^{5/2}}{5 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + b*x),x]

[Out]

(2*a^2*Sqrt[x])/b^3 - (2*a*x^(3/2))/(3*b^2) + (2*x^(5/2))/(5*b) - (2*a^(5/2)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]]
)/b^(7/2)

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin {align*} \int \frac {x^{5/2}}{a+b x} \, dx &=\frac {2 x^{5/2}}{5 b}-\frac {a \int \frac {x^{3/2}}{a+b x} \, dx}{b}\\ &=-\frac {2 a x^{3/2}}{3 b^2}+\frac {2 x^{5/2}}{5 b}+\frac {a^2 \int \frac {\sqrt {x}}{a+b x} \, dx}{b^2}\\ &=\frac {2 a^2 \sqrt {x}}{b^3}-\frac {2 a x^{3/2}}{3 b^2}+\frac {2 x^{5/2}}{5 b}-\frac {a^3 \int \frac {1}{\sqrt {x} (a+b x)} \, dx}{b^3}\\ &=\frac {2 a^2 \sqrt {x}}{b^3}-\frac {2 a x^{3/2}}{3 b^2}+\frac {2 x^{5/2}}{5 b}-\frac {\left (2 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\sqrt {x}\right )}{b^3}\\ &=\frac {2 a^2 \sqrt {x}}{b^3}-\frac {2 a x^{3/2}}{3 b^2}+\frac {2 x^{5/2}}{5 b}-\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{b^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 61, normalized size = 0.90 \begin {gather*} \frac {2 \sqrt {x} \left (15 a^2-5 a b x+3 b^2 x^2\right )}{15 b^3}-\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{b^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + b*x),x]

[Out]

(2*Sqrt[x]*(15*a^2 - 5*a*b*x + 3*b^2*x^2))/(15*b^3) - (2*a^(5/2)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/b^(7/2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 67, normalized size = 0.99 \begin {gather*} \frac {2 \left (15 a^2 \sqrt {x}-5 a b x^{3/2}+3 b^2 x^{5/2}\right )}{15 b^3}-\frac {2 a^{5/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}}\right )}{b^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[x^(5/2)/(a + b*x),x]

[Out]

(2*(15*a^2*Sqrt[x] - 5*a*b*x^(3/2) + 3*b^2*x^(5/2)))/(15*b^3) - (2*a^(5/2)*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[a]])/
b^(7/2)

________________________________________________________________________________________

fricas [A]  time = 0.97, size = 132, normalized size = 1.94 \begin {gather*} \left [\frac {15 \, a^{2} \sqrt {-\frac {a}{b}} \log \left (\frac {b x - 2 \, b \sqrt {x} \sqrt {-\frac {a}{b}} - a}{b x + a}\right ) + 2 \, {\left (3 \, b^{2} x^{2} - 5 \, a b x + 15 \, a^{2}\right )} \sqrt {x}}{15 \, b^{3}}, -\frac {2 \, {\left (15 \, a^{2} \sqrt {\frac {a}{b}} \arctan \left (\frac {b \sqrt {x} \sqrt {\frac {a}{b}}}{a}\right ) - {\left (3 \, b^{2} x^{2} - 5 \, a b x + 15 \, a^{2}\right )} \sqrt {x}\right )}}{15 \, b^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(b*x+a),x, algorithm="fricas")

[Out]

[1/15*(15*a^2*sqrt(-a/b)*log((b*x - 2*b*sqrt(x)*sqrt(-a/b) - a)/(b*x + a)) + 2*(3*b^2*x^2 - 5*a*b*x + 15*a^2)*
sqrt(x))/b^3, -2/15*(15*a^2*sqrt(a/b)*arctan(b*sqrt(x)*sqrt(a/b)/a) - (3*b^2*x^2 - 5*a*b*x + 15*a^2)*sqrt(x))/
b^3]

________________________________________________________________________________________

giac [A]  time = 0.87, size = 59, normalized size = 0.87 \begin {gather*} -\frac {2 \, a^{3} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b} b^{3}} + \frac {2 \, {\left (3 \, b^{4} x^{\frac {5}{2}} - 5 \, a b^{3} x^{\frac {3}{2}} + 15 \, a^{2} b^{2} \sqrt {x}\right )}}{15 \, b^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(b*x+a),x, algorithm="giac")

[Out]

-2*a^3*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^3) + 2/15*(3*b^4*x^(5/2) - 5*a*b^3*x^(3/2) + 15*a^2*b^2*sqrt(x
))/b^5

________________________________________________________________________________________

maple [A]  time = 0.01, size = 54, normalized size = 0.79 \begin {gather*} \frac {2 x^{\frac {5}{2}}}{5 b}-\frac {2 a^{3} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b}\, b^{3}}-\frac {2 a \,x^{\frac {3}{2}}}{3 b^{2}}+\frac {2 a^{2} \sqrt {x}}{b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(b*x+a),x)

[Out]

2/5*x^(5/2)/b-2/3*a*x^(3/2)/b^2+2*a^2*x^(1/2)/b^3-2*a^3/b^3/(a*b)^(1/2)*arctan(x^(1/2)*b/(a*b)^(1/2))

________________________________________________________________________________________

maxima [A]  time = 3.01, size = 54, normalized size = 0.79 \begin {gather*} -\frac {2 \, a^{3} \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{\sqrt {a b} b^{3}} + \frac {2 \, {\left (3 \, b^{2} x^{\frac {5}{2}} - 5 \, a b x^{\frac {3}{2}} + 15 \, a^{2} \sqrt {x}\right )}}{15 \, b^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(b*x+a),x, algorithm="maxima")

[Out]

-2*a^3*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^3) + 2/15*(3*b^2*x^(5/2) - 5*a*b*x^(3/2) + 15*a^2*sqrt(x))/b^3

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 48, normalized size = 0.71 \begin {gather*} \frac {2\,x^{5/2}}{5\,b}-\frac {2\,a\,x^{3/2}}{3\,b^2}+\frac {2\,a^2\,\sqrt {x}}{b^3}-\frac {2\,a^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {x}}{\sqrt {a}}\right )}{b^{7/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(a + b*x),x)

[Out]

(2*x^(5/2))/(5*b) - (2*a*x^(3/2))/(3*b^2) + (2*a^2*x^(1/2))/b^3 - (2*a^(5/2)*atan((b^(1/2)*x^(1/2))/a^(1/2)))/
b^(7/2)

________________________________________________________________________________________

sympy [A]  time = 7.30, size = 121, normalized size = 1.78 \begin {gather*} \begin {cases} \frac {i a^{\frac {5}{2}} \log {\left (- i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{b^{4} \sqrt {\frac {1}{b}}} - \frac {i a^{\frac {5}{2}} \log {\left (i \sqrt {a} \sqrt {\frac {1}{b}} + \sqrt {x} \right )}}{b^{4} \sqrt {\frac {1}{b}}} + \frac {2 a^{2} \sqrt {x}}{b^{3}} - \frac {2 a x^{\frac {3}{2}}}{3 b^{2}} + \frac {2 x^{\frac {5}{2}}}{5 b} & \text {for}\: b \neq 0 \\\frac {2 x^{\frac {7}{2}}}{7 a} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(b*x+a),x)

[Out]

Piecewise((I*a**(5/2)*log(-I*sqrt(a)*sqrt(1/b) + sqrt(x))/(b**4*sqrt(1/b)) - I*a**(5/2)*log(I*sqrt(a)*sqrt(1/b
) + sqrt(x))/(b**4*sqrt(1/b)) + 2*a**2*sqrt(x)/b**3 - 2*a*x**(3/2)/(3*b**2) + 2*x**(5/2)/(5*b), Ne(b, 0)), (2*
x**(7/2)/(7*a), True))

________________________________________________________________________________________